Solutions of Hammerstein Integral Equations via a Variational Principle
نویسندگان
چکیده
منابع مشابه
Comparison of accurate solutions of nonlinear Hammerstein fuzzy integral equations
In this paper, efficient numerical techniques have been proposed to solve nonlinear Hammerstein fuzzy integral equations. The proposed methods are based on Bernstein polynomials and Legendre wavelets approximation. Usually, nonlinear fuzzy integral equations are very difficult to solve both analytically and numerically. The present methods applied to the integral equations is reduced to solve t...
متن کاملSome extensions of Darbo's theorem and solutions of integral equations of Hammerstein type
In this brief note, using the technique of measures of noncompactness, we give some extensions of Darbo fixed point theorem. Also we prove an existence result for a quadratic integral equation of Hammerstein type on an unbounded interval in two variables which includes several classes of nonlinear integral equations of Hammerstein type. Furthermore, an example is presented to show the effic...
متن کاملA variational principle for stationary, axisymmetric solutions of Einstein’s equations
Stationary, axisymmetric, vacuum, solutions of Einstein’s equations are obtained as critical points of the total mass among all axisymmetric and (t, φ) symmetric initial data with fixed angular momentum. In this variational principle, the mass is written as a positive definite integral over a spacelike hypersurface. It is also proved that if an absolute minimum exists then it is equal to the ab...
متن کاملNumerical Solution of Interval Volterra-Fredholm-Hammerstein Integral Equations via Interval Legendre Wavelets Method
In this paper, interval Legendre wavelet method is investigated to approximated the solution of the interval Volterra-Fredholm-Hammerstein integral equation. The shifted interval Legendre polynomials are introduced and based on interval Legendre wavelet method is defined. The existence and uniqueness theorem for the interval Volterra-Fredholm-Hammerstein integral equations is proved. Some examp...
متن کاملNumerical solutions of Hammerstein equations
In this chapter, we survey recent results on the numerical solutions of the Hammerstein equations. Hammerstein equations arise naturally in connection with the Laplace equation with a certain class of nonlinear boundary conditions. The Hammerstein equations with smooth as well as weakly singular kernels will be treated.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Integral Equations and Applications
سال: 2003
ISSN: 0897-3962
DOI: 10.1216/jiea/1181074983